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Abstract

Background: The recent emergence of wearable devices has made feasible the passive gathering of intensive, longitudinal data
from large groups of individuals. This form of data is effective at capturing physiological changes between participants
(interindividual variability) and changes within participants over time (intraindividual variability). The emergence of longitudinal
datasets provides an opportunity to quantify the contribution of such longitudinal data to the control of these sources of variability
for applications such as responder analysis, where traditional, sparser sampling methods may hinder the categorization of individuals
into these phenotypes.

Objective: This study aimed to quantify the gains made in statistical power and effect size among statistical comparisons when
controlling for interindividual variability and intraindividual variability compared with controlling for neither.

Methods: Here, we test the gains in statistical power from controlling for interindividual and intraindividual variability of resting
heart rate, collected in 2020 for over 40,000 individuals as part of the TemPredict study on COVID-19 detection. We compared
heart rate on weekends with that on weekdays because weekends predictably change the behavior of most individuals, though
not all, and in different ways. Weekends also repeat consistently, making their effects on heart rate feasible to assess with
confidence over large populations. We therefore used weekends as a model system to test the impact of different statistical controls
on detecting a recurring event with a clear ground truth. We randomly and iteratively sampled heart rate from weekday and
weekend nights, controlling for interindividual variability, intraindividual variability, both, or neither.

Results: Between-participant variability appeared to be a greater source of structured variability than within-participant
fluctuations. Accounting for interindividual variability through within-individual sampling required 40× fewer pairs of samples
to achieve statistical significance with 4× to 5× greater effect size at significance. Within-individual sampling revealed differential
effects of weekends on heart rate, which were obscured by aggregated sampling methods.

Conclusions: This work highlights the leverage provided by longitudinal, within-individual sampling to increase statistical
power among populations with heterogeneous effects.
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Introduction

Statistical comparisons are vital to ascertaining meaningful
differences between groups in the biomedical sciences. In a
standard power analysis required by many funders, researchers
may increase power by increasing the number of observations
(n), which is typically achieved by increasing the number of
participants [1,2]. Power analyses assume that observations are
independent and identically distributed (IID). As a result,
repeatedly measuring the same individual could lead to
pseudoreplication and confound statistical analyses, as the
longitude leads to both dependence of values on that individual,
and dependence on the time of sampling. In biological systems,
this IID assumption often does not hold. If there are unaccounted
for, nonrandom sources of variance across observations, these
sources may limit the increase in power achieved by larger
sample sizes while obscuring small effects. Although variance
is usually large in aggregated, population-level data, repeated
sampling of data within individuals or within a specific time
frame may reduce variance, improving statistical power [3-5].

Off-the-shelf wearable devices (eg, smartwatches and smart
rings) can continuously measure physiological data such as
heart rate (HR), a commonly integrated physiological measure,
from the user [6]. As wearable devices have become more
prevalent, so has the generation of longitudinal time series data
of physiological measures captured by these devices. While
some methods of data collection may yield IID data, individuals’
physiology and behavior heavily influence the distribution of
measurements collected by wearable devices (eg, nonrandom
lifestyle choices may cause one’s physiology on Saturday nights
to look reliably quite different from Tuesday nights; [7-9]). As
a result, time series data from wearable devices have proven
useful for enabling in-depth monitoring of individuals’
physiology for applications such as early infection detection
[10-13]. The newly available continuous, longitudinal,
within-participant measurements for physiological samples
afforded by wearable devices may prove useful for increasing
confidence in measurements. Representative measurements are
critical for applications such as latent class analysis, where
individuals are grouped into distinct phenotypes based upon
these values. Such data could be used to control for different
sources of variance, thereby increasing statistical power and the
detection of changes specific to subpopulations within clinical
trials or research studies.

Variance in physiological or behavioral measurements may fall
into 2 well-recognized categories: interindividual and
intraindividual variability [14,15]. Interindividual variability
refers to differences between individuals. For example, resting
HR is known to have a wide interindividual variability, with
the normal resting HR for an individual being anywhere from
50-90 beats per minute [16,17]. Intraindividual variability refers
to changes within an individual’s physiology across time. An
individual’s physiology can vary even on short timescales. For

example, an individual’s HR will likely be higher when they
are ill compared with when they are healthy, regardless of how
their healthy baseline HR compares to anyone else’s; however,
such intraindividual changes in HR have been found to be
smaller contributors to overall variance than the changes across
individuals [6,11-13,18]. Interindividual and intraindividual
differences contribute structured changes (ie, the source of
variance is nonrandom) in which the underlying distribution of
these data may differ significantly between individuals and
across time. Time series data from wearables allow for extensive
repeated measurements of an individual’s baseline physiology
to obtain a more precise estimate of what is normal for each
individual under different circumstances. Such longitudinal
sampling allows for an unprecedented level of statistical control
for both interindividual and intraindividual physiological
variability.

To investigate the contributions of these structured sources of
variance in data, we analyzed a longitudinal dataset of HR data
collected during sleep from the TemPredict study [19]. We use
HR because it is a physiological measure known for its
substantial inter- and intraindividual variability, making it an
ideal candidate for investigating the contribution of different
sources of variability in longitudinal data. By leveraging
wearable devices, which offer continuous and precise
measurements from single individuals over time, we can explore
how variations across individuals and within individuals over
time contribute to the overall physiological heterogeneity
observed in the data.

In this study, we focus on understanding how controlling for
both interindividual and intraindividual variability affects the
statistical power in detecting study sample-level and
individual-level physiological responses to weekends. We
leverage weekends as a naturally occurring periodic event, which
are expected to reliably change some individuals’ physiology
due to lifestyle choices [7-9]. We specifically examine how
these sources of variability influence the number of samples
needed to reach statistical significance and the associated effect
size at significance. By using the extensive and continuous data
afforded by wearables, we investigate whether accounting for
these different sources of variability allows us to better detect
physiological responses to weekends, and how wearables
enhance our ability to detect heterogeneity in individual-level
physiological responses to weekends that might otherwise be
masked with sparser traditional sampling methods.

Methods

Ethical Considerations
Mason et al [19] outlined initial participant recruitment in the
University of California San Francisco institutional review board
(#20-30408) approved this study on March 17, 2020; the United
States Department of Defense Human Research Protections
Office (#E01877.1A) also approved all study activities. All
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research was performed in accordance with relevant guidelines
and regulations and the Declaration of Helsinki. All participants
provided electronic, informed consent to participate in the study
via a University of California San Francisco Qualtrics consent
survey.

Data and Device
The original cohort from [19] comprised 63,153 participants
with available multimodal physiological data. For this particular
study, we narrowed down the participant pool to 46,374
individuals with nightly physiological measurements acquired
from a wearable device, the Oura Ring Gen2 (Oura Health Oy).
The Oura Ring is a commercially available wearable device
that may be worn on any finger continuously during daily
activities in both wet and dry environments. The Oura Ring
connects to the Oura App (available on the Google Play Store
and Apple App Store) via Bluetooth. The Oura Ring calculates
interbeat intervals using a 250 Hz photoplethysmogram signal
during periods of sleep to compute HR. Previous work has
externally validated the accuracy of HR measured by the Oura
Ring [20]. Oura calculates HR measurements during sleep and
yields an average HR during sleep (“sleep summary”). In
addition to physiological data, participants self-reported their
demographic information, including sex, age, race, geographical
location, and educational level.

We used these sleep summary HR values spanning from January
6, 2020, to October 18, 2020, for a total of 322 nights (41 full
weeks). During this timeframe, 24 participants had no HR data,
reducing the number of participants to 46,350.

We excluded HR values of below 30 beats per minute or above
100 beats per minute as these values tend to be outside the
bounds of normative HR [16,17]. This eliminated data from 3
individuals, reducing the number of participants to 46,349. We
classified “weekend night” HR measurements as occurring on
Friday or Saturday night and “weekday night” measurements
as occurring on all other nights of the week. We ensured that
all participants had at least 1 weekend night and 1 weekday
night of data per each calendar week for which they have HR
data. This reduced the number of participants to 46,217.

Analysis Software
We used Python software ([21]; version 3.11.9; Python Software
Foundation) for all analyses. This included the
pycountry-convert package (version 0.7.2) for computing
geographical cohort composition; the SciPy ([22]; version
1.13.1) and scikit-posthocs packages ([23]; 0.11.2) for
conducting statistical analyses; and the cliffs-delta package
(version 1.0.0) for calculating effect sizes.

Interindividual and Intraindividual Variability in HR
To gauge the variation in resting HR between individuals
compared to HR within individuals, we used a subset of HR
data from the month of May, as it included the greatest number
of individuals with complete data for the entire month. We
found the SD of HR for each of the 16,010 individuals with
complete data for May and plotted the distribution of SDs. To
compare individual SDs to our sample aggregate from the month

of May, we found the SD of HR across all the HR values from
the 16,010 individuals for this month.

We gauged intraindividual variations in HR on the order of
weeks to months by taking the median HR for each night across
all individuals. Median computations ignored missing nightly
values. We compared (1) weekly fluctuations in HR due to
weekends and weekdays, and (2) seasonal fluctuations in HR
by comparing HR data from January and February to March
and April. We further split up individuals into quartiles based
on the magnitude of the difference between their mean weekend
and mean weekday night HR across all their available data to
see how weekly HR fluctuations differ between individuals.
We used the Mann-Whitney U test to compare weekly, seasonal,
and quartile-dependent fluctuations in HR and reported Cliff δ
[24] as a measure of effect size: we used Cliff δ here and in
subsequent analyses to measure effect size between potentially
non-Gaussian distributions. To better illustrate
weekend-weekday HR differences, we use daily-level data using
time-delay embeddings with a lag of 7 days from two
individuals: (1) with greater HR on weekends, and (2) with
greater HR on weekdays.

Sampling Methods

Cohort-Wide Methods
We initially created a dataset on which we could test the efficacy
of different cohort-wide methods, that is, sampling methods
that use HR data from across our entire dataset of 46,217
individuals. To create this dataset, we randomly sampled one
weekend night and one weekday night HR value from a random
calendar week for each individual. We did this once for all
46,217 individuals in the dataset, resulting in 46,217 pairs of
weekend night and weekday night HR values. We created 1000
of these datasets for 1000 simulated “runs” of each below
sampling methods.

Random Sampling
To simulate random, cross-sectional sampling (ie, not accounting
for variability due to either individuals or time), we scrambled
the original cohort-wide dataset so that it was no longer paired
by individual or by week. We then iterated over each pair of
HR samples, successively adding each pair to a Mann-Whitney
U test; we used the Mann-Whitney U test due to the unpaired
nature of the samples. We found the iteration at which P<.01.
That iteration was equal to the number of pairs sampled at the
point of statistical significance; we computed Cliff’s δ using
sampled values up to and including that iteration. We include
Multimedia Appendix 1 to help illustrate a few iterations of this
and subsequent sampling methods.

Temporal Sampling
Temporal sampling controlled for variability due to time, thereby
accounting for systematic fluctuations due to temporal factors
such as seasonality. This sampling method kept HR values from
the initial dataset paired by calendar week but scrambled the
HR values across individuals to disrupt the individual-level
pairings. Thus, this sampling method maintained only the
paired-by-week nature of the original cohort-wide dataset. Due
to the samples being temporally paired, we used a Wilcoxon

J Med Internet Res 2025 | vol. 27 | e60284 | p. 3https://www.jmir.org/2025/1/e60284
(page number not for citation purposes)

Soltani et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Signed-Rank test rather than the Mann-Whitney U test to find
the iteration at which P<.01. We computed Cliff δ at the point
of significance.

Person-Matched Sampling
To account only for interindividual variability, we used
person-matched sampling. We maintained the order of
individuals as they were sampled in the original cohort-wide
dataset, but instead of sampling a weekend-weekday HR pair
from the same week, we randomly selected a weekend night
HR sample from any point in time and a weekday night HR
sample at any point in time. Due to the samples being paired
by the individual, we used a Wilcoxon Signed-Rank test rather
than the Mann-Whitney U test to find the iteration at which
P<.01. We computed Cliff δ at the point of significance.

Temporal Person-Matched Sampling
This sampling method controlled for both interindividual and
temporal variability across the study sample. Here, we used the
original cohort-wide dataset without any modifications.
Therefore, each weekend-weekday pair was from the same
individual and the same calendar week. Thus, due to the samples
being paired by both individual and time, we used a Wilcoxon
Signed-Rank test rather than the Mann-Whitney U to find the
iteration at which P<.01. We computed Cliff δ at the point of
significance. Note that this sampling method still did not provide
for repeated weeks within any individual. Each individual is
still represented only by a single pair of weekend-weekday HR
samples.

Within-Individual Methods
Here, we compared within-individual methods of sampling and
the impact of controlling for temporality in different manners.
In order to make the methods comparable to each other, we
limited the number of weekend-weekday pairs per individual
to however many valid weeks of HR data each individual has.
Meaning, a week of data counted as “valid” if there was at least
1 weekend and weekday value from which to sample. Given
that our data spans from January to October, each individual
had anywhere from 1 to 41 weeks of data from which to sample
for each sampling method.

Within-Individual Sampling
This method of sampling controlled for only interindividual
variability by focusing on a single individual’s data. We
separated the individual’s data into weekday and weekend
nights. We iteratively randomly sampled weekend-weekday
night HR pairs from these 2 pools, without replacement, until
we reached the maximum number of valid weeks for each
individual. At each iteration, we conducted a Wilcoxon
Signed-Rank test and computed Cliff δ. Given that our sampling
methods were probabilistic, a single run of sampling may not
accurately represent an individual’s true weekend-weekday
night HR difference; therefore, we conducted 100 runs per

individual. Each run used the same procedure for finding points
of significance and computing Cliff δ. We computed the median
points of significance and Cliff δ over the 100 runs. For the
median computations, we ignored runs that failed to reach
significance. This was necessary, as statistical modes cannot
be calculated on distributions that extend into infinity.

Within-Individual Temporal Sampling
This method of sampling controlled for intraindividual (ie,
temporal) variability on the level of an individual. We selected
a single individual and their data. At each iteration, we chose
a random calendar week of their data and selected a random
weekend-weekday night HR pair from that week until the set
of valid weeks from which to sample was depleted. As in
within-individual sampling, we used 100 runs of sampling for
each individual. Likewise, we computed statistical significance
using the Wilcoxon Signed-Rank test and Cliff δ over the 100
runs identically to the within-individual sampling method.

Within-Individual Sequential Sampling
Much like within-individual temporal sampling, this method
controlled for both interindividual and intraindividual variability.
However, we chose the weeks sequentially rather than randomly,
beginning from the individual’s first calendar week of data. The
rationale behind this method was that data that are temporally
closer to each other are more alike than data separated by many
weeks or months. This similarity may imply less variation in
weekday night and weekend night HR distributions, leading to
a smaller number of samples needed to reach significance. As
in within-individual temporal sampling, we conducted 100 runs
of sampling and used the Wilcoxon Signed-Rank test and Cliff
δ over the 100 runs.

Simulated Power Analysis
To contextualize the real-world benefit of within-individual
sampling, we conducted a power analysis using simulated
normal distributions. We varied effect size and statistical power
to determine the number of samples required to detect a
significant difference between 2 normal distributions. We used
effect sizes ranging from 0.05 to 0.95 in increments of 0.05.
We used statistical power thresholds ranging from 0.05 to 1.00
in increments of 0.05. We used these 2 known variables to
calculate the number of pairs of samples required to detect a
significant difference at a significance threshold α=.01 using
both the Mann-Whitney U test and the Wilcoxon Signed-Rank
test.

Results

Participant Characteristics
We outlined participant characteristics in Table 1. Our cohort
consisted primarily of White individuals residing in either North
America or Europe.
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Table 1. Demographic characteristics of participants (N=46,217). Participants were able to self-identify as more than one race.

ValuesDemographic characteristic

Sex, n (%)

27,639 (59.8)Male

17,450 (37.8)Female

38 (<1)Other

1090 (2.4)Undisclosed or unavailable

Age (years), n (%)

97 (<1)18-19

4767 (10.6)20-29

11,825 (26.2)30-39

13,415 (29.7)40-49

9493 (21.0)50-59

5444 (12.1)60 years or older

1176 (2.6)Undisclosed or unavailable

Race, n (%)

37,871 (83.9)White

2429 (5.4)Asian

2387 (5.3)Hispanic

762 (1.7)South Asian

680 (1.5)Black

558 (1.2)Middle Eastern

229 (<1)Native American

147 (<1)Native Hawaiian

1847 (4.1)Other

1090 (2.4)Undisclosed or unavailable

Geographical location, n (%)

28,969 (62.7)North America

13,180 (28.5)Europe

1395 (3.0)Oceania

1177 (2.5)Asia

189 (<1)South America

106 (<1)Africa

1201 (2.6)Undisclosed or unavailable

Education, n (%)

211 (<1)Less than a high school diploma

1704 (3.7)High school diploma or GED

4302 (9.3)Some college

1751 (3.8)Associate degree

16,110 (34.9)Bachelor’s degree

13,506 (29.2)Master’s degree

4143 (9.0)Professional degree

2594 (5.6)Doctorate

1896 (4.1)Undisclosed or unavailable
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HR Shows Interindividual and Intraindividual
Variability
Individuals’ HR SD was substantially lower than that of the
aggregate population in almost all cases (Figure 1A). We found
that the aggregate population SD fell at approximately the 99th
percentile of the distribution of individual-level SDs. We
confirmed that median intraindividual variability was seasonal:
The median HR from January to February was 62.375 (IQR
57.000-68.500) beats per minute (bpm), and HR from March
to April was 61.625 (IQR 56.250-67.750) bpm (P<.001; δ=0.05;
Figure 1B). We observed weekly-level intraindividual
variability: We found that the median HR on weekend nights
was 62.500 (IQR 57.000-68.750) bpm, which was significantly

higher than the median value of 61.375 (IQR 56.000-67.375)
bpm on weekdays (P<.001; δ=0.08; Figure 1B). We also
confirmed the presence of significant heterogeneous population
responses in weekend-weekday night HR differences: The
median difference in HR on weekend nights compared with
weekday nights across quartiles was 3.188 (IQR 2.438-4.625)
bpm, 1.250 (IQR 1.000-1.562) bpm, 0.375 (IQR 0.250-0.625)
bpm, –0.500 (IQR –1.000 to –0.188) bpm for quartiles 4, 3, 2,
and 1, respectively (Figure 1C). The difference in
weekend-weekday night HR varied significantly between
quartiles (P<.001 for all comparisons between quartiles; Figure
1C). We illustrate time-delayed embeddings of a representative
individual with greater weekend night HR (Figure 1D) and an
individual with greater weekday night HR (Figure 1E).
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Figure 1. Variation in heart rate (HR) data across individuals, time, and conditions. (A) Comparison of individuals’ SD of HR compared with the
aggregate SD of HR within the month of May. (B) Median daily HR across time (C) individuals from (B) were grouped into quartiles based on the
difference in their mean weekend and mean weekday night HR. (D) Time-delay embedding of an individual with greater HR on weekends. (E) Time-delay
embedding of an individual with greater HR on weekdays.

Pairs of Samples Required for Significance

Cohort-Wide Methods
The median pairs of samples required to find a statistically
significant difference between weekend night and weekday
night HR at P<.01 was 428.05 (IQR 173.00-838.75; Figures
1A, 1C, and 1D). We also provide the mean (SD) for each
sampling method at P<.01 in Multimedia Appendix 2, as well
as the median (IQR) and mean (SD) for each sampling method
at P<.05 in Multimedia Appendix 3. Temporal sampling
similarly required 460.50 (IQR 186.75-839.00) pairs to reach

significance for the same comparison (Figures 1A, 1C, and 1D).
There was no significant difference between random and
temporal sampling (P=.39). Person-matched sampling and
temporal person-matched sampling required 3-4 times fewer
pairs to reach significance at 133.00 (IQR 62.00-227.25) and
113.00 (IQR 55.00-207.25) pairs, respectively. Temporal
person-matched sampling required significantly fewer pairs
than person-matched sampling (P<.01). Person-matched
sampling and temporal person-matched sampling required
significantly fewer samples than either random or temporal
sampling (P<.001 for all pairwise comparisons). For these
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cohort-wide sampling methods, all 10,000 runs achieved
significance within the 46,217 sampled pairs.

Within-Individual Sampling Methods
A subset of 8798, 9964, and 12,018 individuals from the dataset
of 46,217 individuals did not reach significance in any of the
100 runs of within-individual, within-individual temporal, or
within-individual sequential sampling, respectively. Thus,
subsequent analyses of median and IQR include only the 30,462
individuals from each respective sampling method who reached
significance in all 3 within-individual sampling methods. Of
the individuals who did reach significance in at least 1 of 100
runs, they reached significance for a median of 7.0, 9.0, and 9.0
runs for within-individual, within-individual temporal, or
within-individual sequential sampling, respectively (Multimedia
Appendix 4). There was a weak negative Spearman correlation
between the number of runs in which individuals failed to reach

significance and the number of weeks they had available for
sampling (Multimedia Appendix 5).

The median pairs of samples required to reach significance
using within-individual sampling were 12.0 (IQR 10.00-17.50;
Figures 2B-2D). Similarly, 12.0 (IQR 10.00-18.00) pairs of
samples were required for within-individual temporal sampling.
Within-individual sequential sampling, while also having the
same median of 12.0 pairs of samples, was more variable with
an IQR of 10.00-19.00 pairs of samples. Within-individual
sequential sampling required a greater number of pairs of
samples than both within-individual sampling and
within-individual temporal sampling (P<.001). All
within-individual sampling methods required significantly fewer
samples to reach significance compared with any cohort-wide
sampling method (P<.001 for all pairwise comparisons between
cohort-wide and within-individual sampling methods).

Figure 2. Comparison of the number of pairs of samples required for significance across all sampling methods. (A) Cohort-wide sampling methods.
Dashed lines denote distribution medians. (B) Within-individual sampling methods; note the change in x-axis scale from (A) to (B). Dashed lines denote
distribution medians. (C) Comparison of median pairs of samples required for significance with IQR error bars. (D) Rescaling of (C) on a logarithmic
scale. n.s: nonsignificant; *P<.05; **P<.01; ***P<.001 using the Mann-Whitney U test for cohort-wide methods comparisons and the Wilcoxon
Signed-Rank test for paired within-individual methods comparisons.

Effect Size at Significance

Cohort-Wide Methods
All cohort-wide methods had similar effect sizes: Random
sampling required a median effect size of Cliff δ=0.10 (IQR
0.07-0.16; Figures 3A and 3B); the effect sizes for temporal
sampling were comparable to random sampling at δ=0.10 (IQR

0.07-0.15). There was no significant difference in effect size
between random and temporal sampling (P=.25). The median
effect size of person-matched sampling was δ=0.10 (IQR
0.07-0.14). The median effect size of temporal person-matched
sampling was δ=0.09 (IQR 0.07-0.13). There was no significant
difference in effect size between person-matched and temporal
person-matched sampling (P=.22).
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Figure 3. Effect size comparisons. (A) All sampling methods. (B) Cohort-wide sampling methods. (C) Within-individual sampling methods. (D)
Stratified negative and (E) positive effect size distributions from (C). (F) Comparison of median effect size at significance for all sampling methods.
(G) Empirical power analysis using the Mann-Whitney U test and (H) Wilcoxon Signed-Rank test at α=.01. Orange triangle: random sampling effect
size. Blue triangle: approximate within-individual sampling methods effect size. n.s: non-significant; *P<.05; **P<.01; ***P<.001 using Mann-Whitney
U test for cohort-wide and Kruskal-Wallis with the post hoc Dunn test for within-individual comparisons.

Within-Individual Sampling Methods
All sampling methods that controlled for interindividual
variability via within-individual sampling had effect sizes
approximately 4-5 times that of cohort-wide sampling methods:
The median effect size of within-individual sampling was δ=0.52

(IQR 0.41-0.64; Figures 3A and 3C). The median effect size of
within-individual temporal sampling and within-individual
sequential sampling was very similar at δ=0.46 (IQR 0.33-0.59)
and δ=0.47 (IQR 0.31-0.60), respectively. There was a weak
negative Spearman correlation between the number of runs in
which individuals failed to reach significance and the effect size
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at significance (Multimedia Appendix 5). There was also a
strong negative Spearman correlation between individuals’
effect size at significance and the number of weeks they have
available for sampling (Multimedia Appendix 5).

We further stratified Figure 3C into the negative (Figure 3D)
and positive (Figure 3E) effect sizes from which it was
comprised. The median negative components of
within-individual, within-individual temporal, and
within-individual sequential sampling were δ=–0.53 (IQR –0.63
to –0.44), –0.45 (IQR –0.55 to –0.35), and –0.47 (IQR –0.56
to –0.35), respectively (Figure 3D); the positive components
were δ=0.56 (IQR 0.45-0.64), 0.51 (IQR 0.37-0.59), and 0.52
(IQR 0.38-0.60), respectively (Figure 3E). When comparing
the magnitude (ie, absolute value) of effect size among the
negative, positive, and aggregated components of
within-individual and within-individual sequential sampling,
all effect sizes significantly differed from each other (P<.001;
Figure 3F). For the positive (“+” in Figure 3F), negative (“–”
in Figure 3F), and aggregated components of within-individual
temporal sampling (“Σ” in Figure 3F), all effect sizes
significantly differed from each other (P<.001) with the
exception of the negative and aggregated component (P=.18).

We found that the magnitude of effect sizes at significance for
cohort-wide sampling methods fell short of being categorized
as “small” effects (Figure 3F; gray dashed lines) [25]. In
contrast, all within-individual sampling methods either exceeded
or were close to the threshold of “large” effects. Thus, all
within-individual sampling methods had significantly greater
effect size at significance compared with any cohort-wide
sampling method (P<.001 for all pairwise comparisons between
cohort-wide and within-individual sampling methods).

Simulated Power Analysis
We compared the results from our study to those of a simulated
power analysis (Figures 3G and 3H). Given our effect sizes at
significance for within-individual sampling (δ=0.45 to 0.50),
the aggregated sampling methods (δ=0.10) ought to require 26
times the number of samples to achieve a similar level of
statistical power (80%). In practice, our aggregated random
sampling method required 37 times the number of samples to
achieve statistical significance relative to within-individual
sampling methods.

Discussion

Principal Results
Our analyses found that longitude alone is enough to
substantially reduce the number of comparisons needed to
achieve a given level of significance. In addition, we found that
within-individual comparisons across time allowed for the
separation of multimodality—a second population could be
identified with a different sign of effect than the aggregate or
the majority population. This separation might not only be
critical to the minority populations so identified, but the
separation also led to increased effect sizes for each
population—even the majority population benefited from the
successful separation of these modes. By controlling for
interindividual variability (that is, by comparing individuals to

themselves across measurements), we reduced the number of
samples required for statistical significance by as much as
40-fold compared with cross-sectional, cohort-wide methods.
This capability afforded by longitudinal data is particularly
critical in scenarios where large variability across individuals
diminishes statistical power: the longitudinal measures allowed
us to confidently separate individuals with different sign of
responses (ie, those for whom weekends consistently raised HR
vs those for whom it significantly lowered HR), so that power
and representation of both negative and positive weekend effects
were both improved by virtue of the longitudinal measures. This
is in contrast to cohort-wide sampling methods, where effect
size values were 4-5 times smaller than those found in
within-individual sampling, and overwhelmingly positive. Said
differently, cross-sectional analyses led the smaller group of
individuals with negative weekend effects on HR to be
effectively snowed under by the larger group with weekend HR
rise, and the individual-level response heterogeneity was lost.
This separation of subpopulations by consistent effect size would
not be possible without longitudinal resampling to reveal
consistency of responses to weekends by individual. Once the
population was separated into those with positive and those
with negative weekend HR change, we found that the
cross-sectional population effect size was significantly
underrepresenting the actual effect size of the subpopulation
with positive change on weekends; even the majority population
that was not snowed under was not represented faithfully by
the cross-sectional analysis. By leveraging the within-individual
measurements across time afforded by wearables, this work
demonstrates that longitudinal data can simultaneously enhance
statistical power and reveal response heterogeneity in real-world
applications.

It is worth noting that the most commonly used statistical
comparisons assume all data points to be independent, whereby
repeated measures of an individual would be considered
pseudoreplication. Indeed, in previous publications, we have
encountered reviewers objecting that time-series analysis using
within-individual comparisons is never statistically valid for
this reason. To ignore the possible gains enabled by longitudinal
data now becoming common would be a costly mistake. Lack
of independence should not be confused with the value of
longitudinal, repeated measures of real-world responses—here,
HR on weekends and weekdays as a model system in which to
test these comparisons. What longitude allows for is the
construction of within-individual “baseline” representations of
HR against which deviations from that baseline can be measured
repeatedly to test for consistency of response per individual. To
account for this potential confusion, we reduced our
cross-sectional comparisons to a single response per individual.
This removed pseudoreplication from the cross-sectional model.
However, we assumed the responses of each individual to the
same event should not be random, but that instead individuals
might consistently be of a phenotype (as in, responder or
nonresponder to some drug in a clinical trial). Leveraging
longitude to measure consistency per individual and getting
away from the concern about pseudoreplication allowed us to
test this hypothesis and find substantial support for it.
Longitudinal resampling revealed that people fell into definite
types (ie, signs of HR response to weekends). Such approaches
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might therefore be leveraged in clinical trials to assess
consistency within individuals of response to treatment events.
This, in turn, might allow deeper future analysis to predict
responders and non-responders to treatments. It is interesting
to note that sequential and temporal within-individual sampling
did not amplify the effect of within-individual longitude alone,
suggesting that such future trials might not need to be overly
constrained by pairing measurements in time, but liberated
instead to simply amass multiple comparisons from which to
determine which “phenotype” an individual best fits.

Interestingly, there were a few individuals with neutral (ie, δ=0)
weekend effects. Most individuals exhibited increases in HR
during weekends, while a sizable minority exhibited decreases
in HR. Though not the main focus of this work, to our
knowledge, this is the first report of weekend effects being so
persistent across such a majority of individuals. Behaviors
commonly associated with weekends (eg, increased social
excursions, greater alcohol intake) may help explain why
nighttime HR changes differently for some individuals on these
days compared with weekdays. In addition, these changes in
HR (and underlying behaviors that drive them) may be
associated with differential health outcomes. Further research
is required to determine the relationship between weekend
habits, HR, and long-term health outcomes.

Limitations
This work has several limitations to which we would draw
attention. We assessed HR, which is highly variable, and not
all physiological outputs exhibit the same variability, so
validations should be conducted for other modalities. We used
typical Cliff’s δ cutoffs to categorize “small,” “medium,” and
“large” effects. However, these are artificial categories, and
effect sizes ought to be determined by experts in specific
conditions when applying this approach to different outcomes.
Other modalities than resting HR could be expected to show
different patterns of change on weekends, depending on the
behaviors reflected by each modality (eg, glucose or temperature
might show different kinds of weekend effects than HR). These
would be important explorations when describing the health
impacts of weekend-associated social jet lag.

There are a few socioeconomic caveats to these analyses. First
is our assumption that Friday and Saturday nights constitute
each individual’s weekend nights. Approximately 32.5% of
Americans typically work on Saturdays, Sundays, or holidays,
which may lower the incidence and weaken our assumption of
weekend-weekday night delineation for individuals across
different populations [26]. We did not attempt to correct for
this, as it did not seem to affect our analyses significantly, the
point of which was to compare various statistical approaches

to leveraging longitudinal data, and not to precisely describe
the phenomenology of weekends on health. Second, our study
cohort was composed overwhelmingly of White individuals
residing in the northern hemisphere. While this methodology
of within-individual sampling can be applied to longitudinal
data for any individual, it should not be taken for granted that
similar magnitudes of change in HR (or other modalities) will
be found among study cohorts with different demographic
compositions.

We note that a sizeable proportion of our study cohort (ie, 19%
to 26% depending on sampling method) never reached statistical
significance in a given within-individual sampling method. This
observation is likely due to (1) some individuals having less
data from which to sample, and (2) smaller effects of weekends
being more difficult to detect using statistical tests. In the case
of individuals with less data, large and consistent changes in
weekend HR would be required to reach statistical significance
when fewer observations are available. In contrast, individuals
with more data but smaller changes in weekend HR may have
failed to reach significance due to the effect of weekends on
HR being too weak to detect; that is, comparisons should
correctly fail to find significant differences in individuals for
whom weekends are not causing change, which here was found
to be about one-fifth of the population. In both cases, having
more longitudinally sampled data can increase statistical power
for detecting effects of all magnitudes. In addition, having more
data can help clarify the magnitude and direction of change in
HR, which becomes essential to report as greater sample sizes
with high statistical power will frequently reach statistical
significance.

Conclusions
Our results support study designs using longitudinal,
within-individual measures when looking for biological or
behavioral changes within heterogeneous populations. As the
COVID-19 pandemic has helped reveal, having precise,
within-individual physiological baselines is critical to identifying
states of abnormal physiology on a personalized level
[13,19,27,28]. As algorithms based on within-individual,
longitudinal comparisons become more common in applied
settings, we hope analyses like those we provided here will
expand the adoption of methods to control for nonrandom
sources of variance. By using within-individual measures, we
efficiently identified heterogeneous, individual-level
physiological responses to weekends that were indistinguishable
using traditional aggregation and random sampling methods.
Our methods highlighted not only the benefits of
within-individual measures afforded by wearable devices but
also the large physiological heterogeneity between individuals
that such longitudinal measures can reveal.
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